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A B S T R A C T   

Alzheimer’s disease (AD) is a neurodegenerative disease. Mild cognitive impairment (MCI) represents a state of 
cognitive function between normal cognition and dementia. Longitudinal studies showed that some MCI patients 
remained in a state of MCI, and some developed AD. The reason for these different conversions from MCI remains 
to be investigated. 180 MCI participants were followed for eight years. 143 MCI patients maintained the MCI 
state (MCI_S), and the remaining thirty-seven MCI patients were re-evaluated as having AD (MCI_AD). We ob-
tained 1,036 structural brain characteristics and 15,481 gene expression values from the 180 MCI participants 
and applied weighted gene co-expression network analysis (WGCNA) to explore the relationship between 
structural brain features and gene expression. Regulating mediator effect analysis was employed to explore the 
relationships among gene expression, brain region measurements and clinical phenotypes. We found that 60 
genes from the MCI_S group and 18 genes from the MCI_AD group respectively had the most significant corre-
lations with left paracentral lobule and sulcus (L.PTS) and right subparietal sulcus (R.SubPS) thickness; CTCF, 
UQCR11 and WDR5B were the mutual genes between the two groups. The expression of CTCF gene and clinical 
score are completely mediated by L.PTS thickness, and the UQCR11 and WDR5B gene expression levels signif-
icantly regulate the mediating effect pathway. In conclusion, the factors affecting the different conversions from 
MCI are closely related to L.PTS thickness and the CTCF, UQCR11 and WDR5B gene expression levels. Our results 
add a theoretical foundation of imaging genetics for conversion from MCI to AD.   

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease and the 
most common cause of dementia [1]. Mild cognitive impairment (MCI) 
represents the transitional stage from normal cognition to dementia [2]. 
A meta-analysis of 41 studies that followed MCI patients for > 3 years 
found that the annual conversion rate to dementia was ~5 % to 10 % 
[3]. In other words, in a random sample of 100 MCI patients, ~5 to 15 
will convert to dementia within the first year. Regardless of the true rate, 
MCI remains a reliable predictor for future conversion to dementia. 
Therefore, it is necessary to study the specific risk factors for the pro-
gression from MCI to AD, such as imaging and genetic factors [4]. The 
design of this study was based on such a research problem. 

Structural magnetic resonance imaging (sMRI) biomarkers of MCI or 
AD are an active research area. A wide range of biomarkers have been 
proposed and investigated [5]. Cortical thickness is a sensitive 

biomarker that can be used to track the cognitive and neuropathological 
symptoms of dementia, and cortical thinning may be a marker of AD 
progression [6]. Moreover, genetic factors, such as the apolipoprotein E 
(APOE) gene, which is one of the greatest risk factors for this disease, 
may play an important role in the development of AD [7]. Prevailing 
evidence suggests that CTCF is pivotal for the up-regulation of amyloid 
precursor protein (APP) expression during synaptogenesis in primary 
neurons [8]. Liu et al. [9], have identified that UQCR11 plays a role in 
the biological process of mitochondrial dysfunction in AD. Lambert et al. 
[10], detected 19 loci that reached genome-wide significance, of which 
11 were associated with pathogenic factors of AD. Genetic and genomic 
studies offer insight into many additional genetic risk loci involved in 
the genetically complex nature of AD. A prior study identified four novel 
genes associated with cortical thickness in AD [11]. Is there a relation-
ship between structural brain features and gene expression in the 
pathologic mechanism of AD? 
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Weighted gene co-expression network analysis (WGCNA) is a sys-
tems biology method for describing the correlation patterns between 
brain MRI traits and genetic features and has been successfully applied 
in various biological contexts, such as the analysis of brain imaging data, 
AD, aging and other neurodegenerative diseases [12–15]. WGCNA 
corresponds to a data reduction method and an unsupervised classifi-
cation method that relies on the assumption that highly correlated genes 
within a module are involved in common biological processes [12]. This 
method not only focuses on differentially expressed genes (DEGs) but 
also combines genes with phenotypic and behavioral traits of interest. It 
emphasizes the use of integrating massive genes to phenotypes and 
behavioral traits instead of studying the effects of a single gene [16]. It 
can also be used to identify candidate biomarkers or therapeutic targets. 
Soleimani Zakeri et al. [17], applied the WGCNA method to identify 
several novel gene biomarkers of AD at different stages. Sato et al. [18], 
used WGCNA to detect coordinated modules of brain atrophy and 
demonstrated their longitudinal extension along the clinical course of 
AD progression. This evidence suggests that WGCNA is a suitable 
method for building a bridge between aberrant gene expression and 
sample features and provides insights into a systematic signaling 
network that may be associated with phenotypes of interest. Therefore, 
we applied this method to investigate the relationship between gene 
expression, brain measures and the clinical phenotype of MCI with 
different conversions and preliminary explored the reason for conver-
sion from MCI to AD. 

Here, we ask three specific questions: 1) Which brain features are 
associated with the conversion from MCI to AD? 2) Which genes are 
associated with this conversion? 3) What is the association between this 
brain features and genes? We address these questions by combining 
magnetic resonance imaging with gene expression data in MCI. The 
hypothesis is that there is an association between structural brain fea-
tures and gene expression in patients with conversion from MCI to AD. 
In the current study, 180 MCI participants who were longitudinally 
followed for eight years were enrolled. In total, 37 MCI participants 
developed AD (MCI_AD). The remaining 143 participants remained in 
the MCI state (MCI_S). We identified the DEGs and morphological fea-
tures of the brain cortex between the two groups. A co-expression 
network was constructed by using WGCNA to explore the relationship 
between structural brain features and gene expression levels. Then, key 
modules and hub genes associated with these two groups were identi-
fied. Correlation analysis and regulating mediator effect analysis were 
performed to investigate the relationships among gene expression, brain 
region measurements and clinical phenotypes. We intended to lay a 
theoretical foundation for the factors of MCI conversion to AD. 

2. Materials and methods 

2.1. Sample dataset 

The data we used for our study is from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is 
devoted to the identification and understanding of features that mark 
AD progress. The database includes clinical data, magnetic resonance 
imaging (MRI) data, genetic data and so on. We tracked 190 (after 
quality control, 180 participants are used in this study) participants of 
MCI about eight years. After the late visit records (June 2019), we find 
that 143 participants who maintained MCI (MCI_S) and 37 MCI partic-
ipants turned into AD (MCI_AD). The specific time of conversion in 37 
MCI participants is shown in Supplementary Table S1. We obtained 
those clinical phenotype data, sMRI data and gene expression data in the 
baseline time (tracking start time, May 2011). 

2.2. Ethical statement 

We confirmed that all procedures performed in this study involving 
human participants were in accordance with the ethical standards of the 

ADNI consortium Ethics Committee and with the 1964 Helsinki decla-
ration and its later amendments or comparable ethical standard. Written 
informed consent was obtained from all participants or surrogates (adni. 
loni.usc.edu). 

2.3. Quality control 

One of the most common artefacts in structural brain imaging is 
motion-induced artefacts. Blumenthal, J.D. et al., [19] and Pardoe et al. 
[20], discussed motion and morphometry in clinical and nonclinical 
populations. The ADNI database identified the motion in a raw 
anatomical image by visual inspection. Then, we applied automated 
Brain Images Database Structure (BIDS) apps, which can assess raw 
anatomical MRI scans for quality and output quantitative measurements 
[21]. After this step, 10 subjects (4 MCI_S, 6 MCI_AD) were removed. 

2.4. sMRI data processing 

T1-weighted MRI preprocessing included segmentation, normaliza-
tion and modulation. The detailed steps were published in our previous 
paper [22]. Then, the brain was divided into 148 regions, and the 
following seven brain measures were extracted using FreeSurfer 
(http://www.freesurfer.net/): volume, thickness, area, mean curvature, 
Gaussian curvature, folding degree, and curving degree. Two-sample T 
tests (sex, age and whole brain volume as a covariate) were used to 
obtain the differences in these measures of 148 brain regions. 

2.5. Gene expression data processing 

Detailed microarray gene expression profiling of ADNI participants is 
shown on the ADNI website (https://ida.loni.usc.edu/pages/access/ge 
neticData). Samples were randomized to plates, checked to ensure 
balanced sex and diagnostic traits, and hybridized to the Affymetrix 
Human Genome U219 array plate. Array hybridization, washing, 
staining, and scanning were carried out on an Affymetrix GeneTitan 
system. The quality of gene expression data, including sample quality 
and hybridization and overall signal quality, was analyzed using Affy-
metrix Expression Console software and Partek Genomic Suite 6.6 ac-
cording to standard QC criteria provided by each software package. Raw 
expression values obtained directly from CEL files were preprocessed 
using the robust multi-chip average (RMA) normalization method. The 
Affymetrix HG U219 Array contains 530,467 probes for 49,293 tran-
scripts. All Affymetrix U219 probe sets were mapped and annotated with 
reference to the human genome (hg19). We downloaded the original 
gene expression data, which contained 32,417 genes. We averaged the 
corresponding expression values of the repeat genes and then obtained 
the expression data of 15,481 genes. DEGs were detected between the 
MCI_S and MCI_AD groups based on a two-sample T test (sex, age and 
whole brain volume as a covariate). All the statistical analyses were 
carried out using IBM SPSS Statistical 22. Multiple comparisons 
correction was applied (p < 0.05). DEGs and differentially regions in 
brain measures were used to construct a co-expression network. 

2.6. WGCNA 

To explore the potential relationship between DEGs and the differ-
entially brain regions, the WGCNA package in R software was used to 
construct a gene co-expression network to identify meaningful gene 
modules. A total of 143 samples from the MCI_S group and 37 samples 
from the MCI_AD group were subjected to WGCNA, which used 649 
DEGs and 26 differentially brain regions. Eventually, the highly co- 
expressed gene modules were inferred from the DEGs. DEGs were 
divided into different modules with different colors. We constructed 
associations between gene modules and brain regions and used the R 
package to visualize the module results. Gene expression values were 
extracted from the most significant correlation module for further 
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analysis. 

2.7. Enrichment analysis 

Functional enrichment analysis was carried out using genes from the 
most significant correlation co-expression modules of these two groups. 
The genetic information was mapped to the associated Gene Ontology 
(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways using the Metascape tool (http://metascape.org/) [23]. 

2.8. Identification of hub genes 

The highest intramodular connectivity (highest relationship with 
certain clinical traits and module eigengenes) of genes was identified by 
the WGCNA algorithm as a hub gene of the module. The connectivity 
between genes was measured by the absolute value of Pearson’s corre-
lation. Gene significance (GS) is defined as the relationship between 
gene expression and certain clinical traits. Module membership (MM) 
represents the correlation between gene expression and module eigen-
genes. Genes with high GS and MM were considered the most important 
in the modules were tightly associated with clinical traits. As such, genes 
with high GS and MM can be used for subsequent analysis. 

2.9. Correlation analysis 

We extracted the expression values of the hub genes, the measure 
values of corresponding brain regions, and the clinical phenotype scores 
from the MCI_S and MCI_AD groups. Then, we performed Pearson cor-
relation analysis among those values using IBM SPSS Statistical 22. We 
selected the genes with significant correlations for further explanatory 
analysis. 

2.10. Regulating mediator effects analysis 

Mediating effect analysis and regulating mediator effect analysis 
were performed to explore the relationships among the gene expression 
values, the brain region measures and the clinical phenotypes. Whether 
cortical thickness in the L.PTS mediates the relationship between the 
gene expression value and clinical score and whether the moderating 
effect is regulated by the one of the two genes were assessed. The 
pathway of mediator effects was defined as X => M => Y, where X is the 
gene expression (independent variable), M is the brain region measure 
(mediating variable), and Y is the clinical phenotype (dependent vari-
able). Regulating variable Z regulated the mediator effects in the path-
ways of X =>M or M => Y. 

3. Results 

3.1. Demographics and clinical results 

Age and sex were matched between the MCI_S and MCI_AD groups. 
Compared with the MCI_S group, the MCI_AD group had significantly 
lower clinical scores including MMSE, ADNI_MEM, ADNI_EF and 
ADNI_LAN scores, and higher ADAS and FAQ scores. There was no sig-
nificant difference in the ADNI_VS and CDR scores. Demographic in-
formation is shown in Table 1. 

3.2. Identification of differentially brain regions and DEGs between the 
MCI_S and MCI_AD groups 

Seven brain measures were extracted: volume, thickness, area, mean 
curvature, Gaussian curvature, folding degree, and curving degree. Each 
brain measure contained 148 brain regions. Therefore, we obtained 
7*148 features from each participant. After statistical analysis, twenty- 
six features of the corresponding brain region showed significant dif-
ferences (p < 0.0001, FDR correction), including the thickness of the left 

paracentral lobule and sulcus (L.PTS) and the thickness of the right 
subparietal sulcus (R.SubPS). Detailed information on the twenty-six 
features is provided in Supplementary Table S1. 

A total of 649 DEGs were identified between the MCI_S and MCI_AD 
groups based on the two-sample T test (p < 0.05, FDR correction). 

3.3. WGCNA results 

For the MCI_S group, we constructed a WGCNA network using an 
unsigned type of adjacent matrix and topological overlap matrix (TOM), 
the correlation coefficient of the Pearson algorithm, a power β of 6 
(Supplementary Fig. S1(A)), a minimal module size of 10 and a merge 
cut height of 0.15. This analysis revealed six modules: green, yellow, 
blue, turquoise, brown and red (Supplementary Fig. S2(A)). For the 
MCI_AD group, we also constructed a WGCNA network using an un-
signed type of adjacent matrix and TOM, the correlation coefficient of 
the Pearson algorithm, a power β of 9 (Supplementary Fig. S1(B)), a 
minimal module size of 8 and a merge cut height of 0.15. This analysis 
revealed six modules: green, turquoise, blue, brown, red and yellow 
(Supplementary Fig. S2(B)). Genes in the ‘grey’ module were not clas-
sified into any modules, so we did not analyze this module. For all 
15,481 genes, we used a heatmap to show the weighted network, ad-
jacency relation and topological overlay. In the gene topology, the shade 
of the color represents the strength of the adjacency. The darker the 
color is, the stronger the relationship (Fig. 1(A) and (B)). To show the 
relationships of modules and brain traits, we recalculated a correlation 
matrix for the module genes. Then, we obtained eigengene adjacency 
heatmap and dendrogram of six modules for each group. The eigengene 
adjacency heatmap (Fig. 1(C)) also shows that the yellow and turquoise 
modules had high adjacency. We found that these six modules were 
classified into two main clusters (Fig. 1(E)): for the MCI_S group, one 
included four modules (green, yellow, blue and turquoise), and the other 
included two modules (brown and red). For the MCI_AD group, the 
eigengene adjacency heatmap (Fig. 1(D)) also showed that the blue, 
brown and green modules had high adjacency. We found that these six 
modules were classified into two main clusters (Fig. 1(F)): one included 
four modules (green, turquoise, blue and brown), and the other included 
two modules (red and yellow). 

As shown in Fig. 2(A), the ‘blue’ module had the highest correlation 
with the thickness value of the L.PTS (r = 0.3, p = 3*10− 4). The ‘blue’ 

Table 1 
Demographic information.  

Clinical 
characteristic 

MCI 
p values 

MCI_S (n = 143) MCI_AD (n = 37) 

Sex (M/F) 143 (80/63) 37 (26/11) 0.114 
Age 71.41 ± 7.59 73.35 ± 7.19 0.162 
MMSE 28.31 ± 1.57 27.57 ± 1.82 0.014* 
ADAS 12.48 ± 5.45 20.14 ± 6.00 0.000** 
ADNI_MEM 0.61 ± 0.59 − 0.06 ± 0.69 0.000** 
ADNI_EF 0.60 ± 0.86 0.05 ± 1.03 0.001** 
ADNI_LAN 0.55 ± 0.67 0.03 ± 0.93 0.000** 
ADNI_VS 0.05 ± 0.69 − 0.02 ± 0.83 0.621 
CDR 0.05 ± 0.00 0.05 ± 0.00 1 
FAQ 1.80 ± 2.96 5.35 ± 4.61 0.000** 

Data are shown as the mean ± std, and p values were obtained from two-sample 
T tests and 5000 bootstrapping tests (**: p < 0.01; *: p < 0.05). MCI_S: stable 
MCI; MCI_AD: conversion from MCI to AD; MMSE: Mini-Mental State Exami-
nation; ADAS: Alzheimer’s Disease Assessment Scale: 13 items of word recall, 
commands, construction, delayed word recall, naming, ideational praxis, 
orientation, word recognition, recall instructions, spoken language, word 
finding, comprehension, and number cancellation; ADNI_MEM: composite score 
for memory in the ADNI database. ADNI_EF: composite score for executive 
functioning in the ADNI database; ADNI_LAN: composite score for language in 
the ADNI database; ADNI_VS: composite score for visuospatial functioning in the 
ADNI database; CDR: Clinical Dementia Rate; FAQ: Functional Activities 
Questionnaire. 
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module included 60 genes. As shown in Fig. 2(B), the ‘turquoise’ module 
had the highest correlation with the thickness of the R.SubPS (r = 0.45, 
p = 5*10-3). The ‘turquoise’ module included 18 genes. Fourteen mutual 
genes were in these two most correlated modules. Seventy-eight gene 
IDs, symbols, and descriptions are shown in Supplementary Table S2. 

3.4. Enrichment analysis results 

According to the enrichment analysis, we found that these genes 
were mainly involved in muscle structure development, the positive 

regulation of I-kappaB kinase/NF-kappaB signaling, base excision 
repair, endoplasmic reticulum (ER) calcium ion homeostasis and AD. 
These two groups of genes were also enriched in the same KEGG 
pathway: AD. Detailed information is shown in Fig. 3. 

3.5. Identification of hub genes 

Based on the criteria (|MM|>0.8 and |GS|>0.2), 8 genes in the MCI_S 
group with high connectivity in the ‘blue’ module and 5 genes in the 
MCI_AD group with high connectivity in the ‘turquoise’ module were 

Fig. 1. DEGs and the differentially brain regions in the MCI_S and MCI_AD groups from WGCNA. (A) Network heatmap of all genes in the MCI_S group; (B) Network 
heatmap of all genes in the MCI_AD group; (C) eigengene adjacency heatmap of six modules in the MCI_S group; (D) eigengene adjacency heatmap of six modules in 
the MCI_AD group; (E) eigengene dendrogram of six modules in the MCI_S group; (F) eigengene dendrogram of six modules in the MCI_AD group. 
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identified as hub genes. Among them, the CTCF, UQCR11 and WDR5B 
genes were common three genes between MCI_S group and MCI_AD 
groups. Detail information on these hub genes and the MM values and 
GS values of all these genes are provided in Supplementary Table S2. 

3.6. Correlation analysis results 

After the identification, we selected the three common hub genes 
(CTCF, UQCR11 and WDR5B) between both groups. Then we extracted 
the gene expression value and the brain measures (cortical thickness of 
the L.PTS and R.SubPS) and clinical scores. Pearson correlation analysis 
was aimed at determining whether the brain measures are associated 
with the expression values and clinical scores of the three hub genes. We 
found that these three genes were significantly correlated with the L. 
PTS: 10,664 (CTCF, r = 0.235, p=0.001), 10,975 (UQCR11, r=-0.167, 
p=0.025), and 54,554 (WDR5B, r=-0.204, p=0.006) but not with the R. 
SubPS. Then, we performed Pearson correlation analysis between the 
cortical thickness of the L.PTS and clinical scores. We found that the 
MMSE, ADAS, ADNI_MEM, ADNI_EF, ADNI_LAN and FAQ scores were 

significantly corrected with the cortical thickness of the L.PTS. The 
aggregated information is shown in Fig. 4. 

3.7. Regulating mediator effects analysis 

Mediating effect analysis results showed that the cortical thickness of 
the L.PTS acts as a complete mediator between gene expression (CTCF 
and UQCR11) and clinical scores (MMSE, ADAS, ADNI_MEM and 
ADNI_EF) (Fig. 5 and Table 2). The cortical thickness of the L.PTS does 
not act as a mediator between WDR5B expression and clinical scores. 
Then, we analyzed whether each mediating effect pathway in Table 2 
was regulated by the other two genes. The results of the regulating 
mediating effect analysis showed that the different expression levels of 
the UQCR11 and WDR5B genes significantly regulated the mediating 
effect pathway involved in the CTCF gene. In the pathway of CTCF =>

thickness of the L.PTS => MMSE (or ADNI_EF) score, when the 
expression of the WDR5B gene was at low or average level, CTCF gene 
expression affected the cortical thickness of the L.PTS; when the 
expression of the UQCR11 gene was at high or average level, the 

Fig. 2. Module and trait relationships diagram (p < 0.01, FDR correction). (A) Module and brain trait relationships in the MCI_S group. L.PTS: thickness of the left 
paracentral lobule and sulcus; (B) Module and brain trait relationships in the MCI_AD group. R.SubPS: thickness of the right subparietal sulcus. The remaining 
abbreviations of the abovementioned brain regions are shown in Supplementary Table S1. 
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thickness of L.PTS affected the MMSE (or ADNI_EF) score; and when the 
expression of the WDR5B gene was at low or average level, the thickness 
of the L.PTS affected the ADNI_EF score. In the pathway of CTCF =>

thickness of the L.PTS => ADAS (or ADNI_MEM) score, when the 
expression of the WDR5B gene was at low or average level, CTCF gene 
expression affected the cortical thickness of the L.PTS; when the 
expression of the WDR5B or UQCR11 gene was at any level, the thick-
ness of the L.PTS did not affect the ADAS (or ADNI_MEM) score. The 
mediating effect pathway in UQCR11 is shown in Supplementary Fig. S3 
and Supplementary Table S3. 

4. Discussion 

To preliminarily explore the effects of factors of imaging genetics on 
conversion from MCI to AD, we applied WGCNA to investigate the as-
sociations between 15,481 gene expression and 1,036 brain character-
istics of MCI patients who experienced different conversions. We found 
that 1) 26 brain characteristics and 649 gene expression values were 
significantly different between the MCI_S and MCI_AD groups; 2) 60 
gene expression values had the most significant correlations with the 
cortical thickness of the L.PTS in the MCI_S group and 18 gene expres-
sion values had the most significant correlations with the cortical 
thickness of the R.SubPS in the MCI_AD group; 3) CTCF, UQCR11, and 
WDR5B are the mutual genes in MCI_S and MCI_AD groups; and 4) the 
expression levels of the WDR5B and UQCR11 genes significantly regu-
late the mediating effect of the CTCF gene. Our results imply that the 
factors of affecting the conversion of some cases from MCI to AD are 
closely related to the thickness of the L.PTS and expression levels of the 
CTCF, UQCR11 and WDR5B genes over the course of the disease. 

Several studies have demonstrated that cortical thickness is one of 
the most sensitive biomarkers for AD, as is structural atrophy [5,11,24]. 

As the disease progresses from MCI to AD, a general thinning of the 
entire cortex, including the parietal lobe, frontal lobe, medial temporal 
lobe, is observed [24,25]. In this study, we identified 26 significantly 
different characteristics associated with cortical thickness, such as the 
cortical thicknesses of the superior temporal sulcus, superior frontal 
sulcus and middle frontal gyrus. Previous studies have noted the 
importance of frontal lobe and temporal lobe in AD, which is consistent 
with our findings [26–29]. These changes in cortical thickness may be 
one of the factors that partially affect conversion from MCI to AD. For 
gene expression, we found 649 significantly different DEGs between the 
MCI_S and MCI_AD groups. Berchtold et al. [30], have reported that 
brain-related gene expression patterns could differentiate MCI from 
normal aging and AD. The enrichment analysis showed that 649 DEGs 
were involved in phosphatidylinositol 3-kinase signaling, cellular 
senescence, synaptic signaling, ion homeostasis and so on. Castri et al., 
[31] found that the phosphatidylinositol 3-kinase pathway plays an 
important role in the pathogenesis of AD. LDL receptor-related protein 6 
(LRP6) is an essential coreceptor for wnt signaling, and its genetic var-
iants have been linked to AD risk [32]. Sortilin-related VPS10 
domain-containing receptor 3 (SORCS3) encodes a type-1 receptor 
transmembrane protein whose genetic variation is also associated with 
an increased risk of AD [33,34]. In addition, growth hormone releasing 
hormone (GHRH) promotes increased circulating levels of insulin-like 
growth factor 1 (IGF-1) [35]. A prior study suggested that a decreased 
serum IGF-1 level plays a role as an independent risk factor for AD [36]. 
This evidence suggests that most of these GO biological processes are 
related to the pathology of AD [37–39]. 

Sixty genes had the most significant correlations with the cortical 
thickness of the L.PTS in the MCI_S group, and 18 genes in the turquoise 
module had the most significant correlations with the cortical thickness 
of the R.SubPS in the MCI_AD group. The enrichment analysis 

Fig. 3. Enrichment analysis results. (A)Heatmap of enriched terms across input genes, colored by p-values. (B) Overlap between genes. Purple curves link identical 
genes; blue curves link genes that belong to the same enriched ontology term. 
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demonstrated that these genes were mainly involved in ER calcium ion 
homeostasis. These two groups of genes were also enriched in the same 
KEGG pathway: AD. These Go biological processes and KEGG pathways 
play critical roles in the pathology of AD. Calcium cations regulate 
neuronal plasticity underlying learning and memory and neuronal sur-
vival [40]. The ER is an organelle that actively removes calcium ions 
from the cytoplasm, and previous findings have suggested that 

perturbed ER calcium ion homeostasis contributes to the dysfunction 
and degeneration of neurons observed in AD [41,42]. Our results suggest 
that changes in gene expression may influence changes in the cortical 
thickness of the L.PTS and R.SubPS, and then indirectly induce con-
version from MCI to AD. Wee et al. [43], found that changes in the 
paracentral lobule and superior and inferior parietal cortices can be 
extensively used for the accurate detection of AD or MCI. Yang et al. 

Fig. 4. The Pearson correlations between gene expression, clinical scores and the thickness of the L.PTS. (A) Pearson correlation between the gene expression value 
of CTCF and cortical thickness of the L.PTS; (B) Pearson correlation between the gene expression values of UQCR11 and cortical thickness of the L.PTS; (C) Pearson 
correlation between the gene expression values of WDR5B and cortical thickness of the L.PTS; (D) Pearson correlation between cortical thickness of the L.PTS and 
MMSE score; (E) Pearson correlation between cortical thickness of the L.PTS and ADAS score; (F) Pearson correlation between cortical thickness of the L.PTS and 
ADNI_MEM score; (G) Pearson correlation between cortical thickness of the L.PTS and ADNI_EF score; (H) Pearson correlation between cortical thickness of the L.PTS 
and ADNI_LAN score; (I) Pearson correlation between cortical thickness of the L.PTS and FAQ score; **: p < 0.01; *: p < 0.05. 
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[44], found that the cortical thickness of the paracentral lobule was 
significantly reduced in patients with AD compared with those with 
MCI. However, there are few studies on the cortical thickness of the 
subparietal sulcus (SubPS). We aimed to illustrate its adjacent structure. 
The SubPS provides the lower boundary of the precuneus (PreCu), which 
is a region of the posteromedial parietal lobe. Its functions include vi-
suospatial imagery, episodic memory retrieval and self-processing op-
erations and consciousness [45]. Csukly et al. [46], found that the PreCu 
was significantly decreased in amnestic MCI patients relative to healthy 
controls. Karas et al. [47], found that early-onset AD patients showed 
disproportionate PreCu atrophy compared to late-onset AD patients. Ye 
et al., [48] found that the early MCI group exhibited cortical thinning in 
the left medial temporal region compared with controls, whereas the 
late MCI group showed cortical thinning in widespread regions, 
including the medial temporal region and the precuneus. Chen et al. 
[49], found that the precuneus-based degeneration patterns could aid in 
the understanding in the neural pathological lesions present in pre-
clinical AD patients. Their results indirectly validated our result of 
morphologic changes in the SubPS. 

Interestingly, CTCF, UQCR11 and WDR5B were the mutually 
expressed in the MCI_S and MCI_AD groups. CTCF is a zinc finger pro-
tein, and its mediated gene is involved in the regulation of remote long- 
term memory in the cortex [50,51]. Mutations in CTCF-binding sites are 
associated with frontotemporal lobar degeneration, which belongs to 
the group of neurodegenerative diseases, a single nucleotide poly-
morphism (SNP) in a CTCF-binding site modifies the surrounding 
chromatin conformation and spatially regulates the expression level of a 
causative gene of transmembrane protein 106B (TMEM106B), leading to 
neuronal death [52]. Augustin et al. [53], identified that CTCF as the 
binding site of the transcription factor (TF) family that could provide 
potential targets for the therapeutic treatment of AD by using bioinfor-
matics analysis. UQCR11 encodes the smallest known component of the 
ubiquinol-cytochrome c reductase complex, which forms part of the 
mitochondrial respiratory chain. Mitochondrial bioenergetic function, 
specifically respiratory chain activity [54], is reduced in AD. 
Armand-Ugon et al. [55], found that UQCR11 expression was decreased 
in the entorhinal cortex with the development of AD. WDR5B encodes a 
protein containing several WD40 repeats. The WD40 repeats, as the top 

Fig. 5. Regulating mediator effects analysis (A-D): The cortical thickness of L.PTS acts as a complete mediator effect between gene expression values and clinical 
scores. (A) and (B) the different expression level of the WDR5B and UQCR11 gene significantly regulates the mediating effect pathway involved in CTCF gene, which 
is in pathway of CTCF => thickness of the L.PTS and thickness of the L.PTS => MMSE (or ADNI_EF) score; (C) and (D) the different expression level of the WDR5B 
and UQCR11 gene significantly regulates the mediating effect pathway involved in CTCF gene, which is in pathway of CTCF => thickness of the L.PTS. Detailed 
information is shown in Supplementary Table S3. 

Table 2 
Mediating effect analysis results.  

Mediating effect path c Total effect a b a*b a*b (95% BootCI) c’ Direct effect Testing conclusion 

CTCT=>L.PTS=>MMSE 0.472 0.180** 2.234** 0.401 0.014 ~ 0.113 0.07 Complete mediating effect 
CTCT=>L.PTS=>ADAS − 2.665 0.180** − 10.216** − 1.836 − 0.123 ~ -0.021 − 0.829 Complete mediating effect 
CTCF =>L.PTS=>ADNI_MEM 0.476* 0.180** 0.850** 0.153 0.013 ~ 0.102 0.323 Complete mediating effect 
CTCF =>L.PTS=>ADNI_EF 0.632* 0.180** 1.124** 0.202 0.011 ~ 0.100 0.429 Complete mediating effect  

** p < 0.01. 
* p < 0.05. Please refer to the Table 1 and Supplementary Table S1 for all the abbreviations. 
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ten most abundant domains in eukaryotes, participate in signal trans-
duction, transcriptional regulation, autophagy, apoptosis and so on [56, 
57]. Increasing evidence indicates that dysregulated autophagy plays a 
key role in the pathogenesis of AD and that macro-autophagy is exten-
sively involved in the neurodegenerative process in AD [58]. Taken 
together, these results suggest that the CTCF, UQCR11 and WDR5B 
genes play critical roles in conversion from MCI to AD. For the corre-
lation analysis, the gene expression value of CTCF had a significant 
negative correlation with the cortical thickness of the L.PTS. However, 
the gene expression values of UQCR11 and WDR5B had significant 
positive correlations with the cortical thickness of the L.PTS. This 
finding means that the lower the expression of CTCF is or the higher the 
expression of UQCR11 and WDR5B is, the thicker the cortical thickness 
of the L.PTS. Moreover, the cortical thickness of the L.PTS had a sig-
nificant positive correlation with the clinical scores (MMSE, memory, 
executive and language function). The ADAS and FAQ scores had a 
significant negative correlation with the cortical thickness of the L.PTS. 
This finding means that the thicker the L.PTS, the better the clinical 
performance (i.e., higher MMSE, memory, executive, and language 
function and lower ADAS and FAQ scores). In the early stages of the 
disease, both cortical thickness and gene expression are quietly chang-
ing, underlying the groundwork for conversion from MCI to AD. 

The expression value of the CTCF gene and clinical scores were 
completely mediated by the thickness of the L.PTS. This result implied 
that the changes of the CTCF gene expression levels affect the thickness 
of the L.PTS, which ultimately lead to the clinical scores. We found no 
direct effects of CTCF gene expression on cognition and strong indirect 
effects of CTCF gene expression on cognition through the thickness of 
the L.PTS, suggesting that the observed associations of CTCF gene 
expression on cognition are completely attributable to gene expression 
effect on cortical atrophy. These findings suggest that high gene 
expression values promote thinning of the cortex, which, in turn, drives 
a decline in cognitive performance. A previous study showed that ge-
netic factors contribute to cortical changes throughout life [59]. Ac-
cording to the results of regulating mediating effect analysis, the 
different expression levels of the UQCR11 and WDR5B genes signifi-
cantly regulate the mediating effect pathway involved in the CTCF 
genes. These results indicate that intervening with genetic factors might 
be the key to preventing the occurrence of AD [60]. In the pathway of 
CTCF => thickness of the L.PTS => MMSE (or ADNI_EF) score, the 
WDR5B gene regulates the mediating effect in the subpath of CTCF =>

thickness of the L.PTS; the UQCR11 and WDR5B gene regulates the 
subpath of thickness of the L.PTS => MMSE (or ADNI_EF) score. In the 
pathway of CTCF => thickness of the L.PTS => ADAS (or ADNI_MEM) 
score, the WDR5B gene regulates the mediating effect in the subpath of 
CTCF => thickness of the L.PTS but does not regulate the mediating 
effect in the subpath of thickness of the L.PTS => ADAS (or ADNI_MEM) 
score. Based on the functional analysis of the three genes, we can infer 
that the level of ploygene expression affects cortical thickness and hence 
clinical performance. 

Several limitations should be noted. First, in this study, we found that 
the cortical thickness of the L.PTS is a mediator between the three genes 
expression and clinical features in conversion from MCI to AD; however, 
the specific regulatory mechanism still needs further study. Second, the 
FreeSurfer software package has certain limitations, and its measure-
ment results may be inconsistent [61]. Third, WGCNA does not indicate 
which co-expression module detection method is best. While the default 
hierarchical clustering methods have performed well in several real data 
applications, it would be desirable to use these methods to evaluate our 
data set and compare the results. 

5. Conclusion 

We applied WGCNA to investigate the relationships between 15,481 
gene expression and 1,036 brain characteristics of MCI patients who 
experienced different conversions and to explore the imaging genetics 

factors for conversion from MCI to AD. We found that the cortical 
thickness of the L.PTS is a mediator between CTCF, UQCR11 and 
WDR5B gene expression and clinical features in conversion from MCI to 
AD. This association indicates that conversion from MCI to AD is closely 
related to the cortical thickness of the L.PTS and the expression of these 
three genes. Our study lays an imaging genetics theoretical foundation 
for the early clinical diagnosis of AD. 

Author statement 

Xuwen Wang and Suping Cai collected the data, wrote the protocol 
and designed the whole study together. Liyu Huang supervised the 
entire project. Kexin Huang and Fan Yang undertook the experimental 
procedures and analyses. Dihui Chen performed the statistical analysis. 
All the authors contributed to and have approved the final manuscript. 

Declaration of Competing Interest 

The authors have no conflicts of interest to declare. 

Acknowledgments 

This work was supported by the National Natural Science Foundation 
of China [grant nos. 81801789 and 81671778], the China Postdoctoral 
Science Foundation [grant no. 2017M623128], the National Natural 
Science Foundation of Shaanxi of China [grant no. 2020JM-212], and 
the Fundamental Research Funds for the Central Universities [grant no. 
XJS201203]. 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.bbr.2021.113330. 

References 

[1] L. Raz, J. Knoefel, K. Bhaskar, The neuropathology and cerebrovascular 
mechanisms of dementia, J. Cereb. Blood Flow Metabol. 36 (1) (2016) 172–186. 

[2] V.V. Giau, E. Bagyinszky, S.S.A. An, Potential fluid biomarkers for the diagnosis of 
mild cognitive impairment, Int. J. Mol. Sci. 20 (17) (2019). 

[3] A.J. Mitchell, M. Shiri-Feshki, Rate of progression of mild cognitive impairment to 
dementia–meta-analysis of 41 robust inception cohort studies, Acta Psychiatr. 
Scand. 119 (4) (2009) 252–265. 

[4] S. Chaudhury, K.J. Brookes, T. Patel, A. Fallows, T. Guetta-Baranes, J.C. Turton, 
R. Guerreiro, J. Bras, J. Hardy, P.T. Francis, R. Croucher, C. Holmes, K. Morgan, A. 
J. Thomas, Alzheimer’s disease polygenic risk score as a predictor of conversion 
from mild-cognitive impairment, Transl. Psychiatry 9 (1) (2019) 154. 

[5] L. Sorensen, C. Igel, A. Pai, I. Balas, C. Anker, M. Lillholm, M. Nielsen, I. 
Alzheimer’s Disease Neuroimaging, B. the Australian Imaging, a, Lifestyle flagship 
study of, Differential diagnosis of mild cognitive impairment and Alzheimer’s 
disease using structural MRI cortical thickness, hippocampal shape, hippocampal 
texture, and volumetry, Neuroimage Clin. 13 (2017) 470–482. 

[6] K. Reiter, K.A. Nielson, T.J. Smith, L.R. Weiss, A.J. Alfini, J.C. Smith, Improved 
cardiorespiratory fitness is associated with increased cortical thickness in mild 
cognitive impairment, J. Int. Neuropsychol. Soc. 21 (10) (2015) 757–767. 

[7] C.M. Karch, A.M. Goate, Alzheimer’s disease risk genes and mechanisms of disease 
pathogenesis, Biol. Psychiatry 77 (1) (2015) 43–51. 

[8] Y. Yang, W.W. Quitschke, A.A. Vostrov, G.J. Brewer, CTCF is essential for up- 
regulating expression from the amyloid precursor protein promoter during 
differentiation of primary hippocampal neurons, J. Neurochem. 73 (6) (1999) 
2286–2298. 

[9] W. Liu, M. Li, W. Zhang, G. Zhou, X. Wu, J. Wang, Q. Lu, H. Zhao, Leveraging 
functional annotation to identify genes associated with complex diseases, PLoS 
Comput. Biol. 16 (11) (2020), e1008315. 

[10] J.C. Lambert, C.A. Ibrahim-Verbaas, D. Harold, A.C. Naj, Meta-analysis of 74,046 
individuals identifies 11 new susceptibility loci for Alzheimer’s disease, Nat. Genet. 
45 (12) (2013) 1452–1458. 

[11] B.H. Kim, Y.H. Choi, J.J. Yang, S. Kim, K. Nho, J.M. Lee, Identification of novel 
genes associated with cortical thickness in Alzheimer’s disease: systems biology 
approach to neuroimaging endophenotype, J. Alzheimers Dis. 75 (2) (2020) 
531–545. 

[12] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network 
analysis, BMC Bioinformatics 9 (2008) 559. 

X. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.bbr.2021.113330
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0005
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0005
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0010
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0010
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0015
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0015
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0015
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0020
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0020
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0020
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0020
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0025
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0025
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0025
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0025
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0025
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0030
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0030
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0030
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0035
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0035
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0040
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0040
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0040
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0040
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0045
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0045
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0045
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0050
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0050
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0050
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0055
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0055
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0055
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0055
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0060
http://refhub.elsevier.com/S0166-4328(21)00218-7/sbref0060


Behavioural Brain Research 410 (2021) 113330

10

[13] S. Mukherjee, C. Klaus, M. Pricop-Jeckstadt, J.A. Miller, F.L. Struebing, 
A microglial signature directing human aging and neurodegeneration-related gene 
networks, Front. Neurosci. 13 (2019) 2. 

[14] J.W. Liang, Z.Y. Fang, Y. Huang, Z.Y. Liuyang, X.L. Zhang, J.L. Wang, H. Wei, J. 
Z. Wang, X.C. Wang, J. Zeng, R. Liu, Application of weighted gene co-expression 
network analysis to explore the key genes in Alzheimer’s disease, J. Alzheimers 
Dis. 65 (4) (2018) 1353–1364. 

[15] Y. Sun, J. Lin, L. Zhang, The application of weighted gene co-expression network 
analysis in identifying key modules and hub genes associated with disease status in 
Alzheimer’s disease, Ann. Transl. Med. 7 (24) (2019) 800. 

[16] Z.T. Wang, C.C. Tan, L. Tan, J.T. Yu, Systems biology and gene networks in 
Alzheimer’s disease, Neurosci. Biobehav. Rev. 96 (2019) 31–44. 

[17] N.S. Soleimani Zakeri, S. Pashazadeh, H. MotieGhader, Gene biomarker discovery 
at different stages of Alzheimer using gene co-expression network approach, Sci. 
Rep. 10 (1) (2020) 12210. 

[18] K. Sato, T. Mano, H. Matsuda, M. Senda, R. Ihara, K. Suzuki, H. Arai, K. Ishii, K. Ito, 
T. Ikeuchi, R. Kuwano, T. Toda, T. Iwatsubo, A. Iwata, I. Japanese Alzheimer’s 
Disease Neuroimaging, Visualizing modules of coordinated structural brain 
atrophy during the course of conversion to Alzheimer’s disease by applying 
methodology from gene co-expression analysis, Neuroimage Clin. 24 (2019), 
101957. 

[19] J.D. Blumenthal, A. Zijdenbos, E. Molloy, J.N. Giedd, Motion artifact in magnetic 
resonance imaging: implications for automated analysis, Neuroimage 16 (1) (2002) 
89–92. 

[20] H.R. Pardoe, R. Kucharsky Hiess, R. Kuzniecky, Motion and morphometry in 
clinical and nonclinical populations, Neuroimage 135 (2016) 177–185. 

[21] K.J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capotă, M. 
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